www.epa.gov/enviroatlas # **Percent Rare Ecosystem Forms** This EnviroAtlas national map illustrates the percent of land area within each 12-digit hydrologic unit (HUC) that is comprised of relatively rare ecosystem forms or ecoforms. In EnviroAtlas, ecosystem rarity is evaluated based on four ecosystem spatial pattern categories: small patch, large patch, linear, and matrix-forming. Ecoforms (and corresponding ecosystems) with values of the relative rarity index greater than 75 (on a scale of 0 to 100) are considered rare. ## Why are rare ecosystems important? Ecosystems are interconnected networks that include living organisms interacting with the non-living (abiotic) environment (e.g., climate and soil). The natural processes that occur within ecosystems produce benefits or ecosystem services (e.g., clean air, clean water, and food) that human communities and other ecological communities depend on to be most productive. These services may be unique to processes occurring within individual ecosystems. For example, wetlands, forests, and grasslands provide different functions and benefits. Protecting rare ecosystems may also preserve the services they provide. Traditionally, conservation efforts have largely focused on protecting vulnerable species. The U.S. Endangered Species Act (ESA), for example, provides a mechanism to restore specific populations and species. Though this method has been successful in restoring and protecting some specific populations, species-driven conservation may not account for the collective benefits and services that emerge from entire ecosystems. There is growing recognition that ecosystem-based conservation is an effective approach to maintaining and protecting biodiversity. Protecting an entire ecosystem ensures the protection of both the living and non-living elements that comprise the system. By mapping and evaluating the existence of rare ecosystems, conservation efforts can effectively target and protect multiple species that comprise and/or depend on those ecosystems. In addition to the benefits to biodiversity conservation, rare ecosystems may also provide aesthetic, recreational, and cultural value to neighboring communities. For example, the Cascade Mountains in the Pacific Northwest include matrix-forming and large patch ecosystems. In addition to wildlife habitats, these ecosystems provide recreational opportunities for residents and tourists. One challenge in an ecosystem-based conservation approach is defining "rare ecosystem." Rare ecosystems are often defined as ecosystems that occupy less than 30 percent of their original or pre-industrial range. However, this definition is difficult to apply due to a lack of historical data. ² To address this gap in data, EPA has developed an index of ecosystem rarity that can distinguish between ecosystems which are naturally small in extent (i.e. riparian or bog systems) from those that have limited area due to land conversion and development. #### How can I use this information? This map, Percent Rare Ecosystem Forms, and its underlying data can be used to estimate the relative percentage of land area within 12-digit hydrologic units (HUCs) in the conterminous U.S. that may contain rare ecosystems with an Ecoform Relative Rarity Index value greater than 75. Identifying the presence of rare ecosystems may help inform future conservation efforts and land use planning. This map can be viewed in conjunction with both the Rare Ecosystems supplemental biophysical-raster map and the Land Protection Status (PADUS) layers (also found in the Supplemental Data area of the EnviroAtlas interactive map). Together, these layers can show HUCs with a high percentage of rare ecosystems and locations within HUCs where rare ecosystems may exist in relation to protected areas. This map can also be used with population data to provide insight into the overlap of human populations and rare ecosystems. ## How were the data for this map created? These data are based on U.S. Geological Survey (USGS) National Gap Analysis Program (GAP) landcover data. Open water and human use (e.g., urban or agriculture) landcover types were removed to concentrate on more natural ecosystems. Ecosystems were grouped into four spatial pattern types (i.e. matrix forming, linear, small patch and large patch) as defined by NatureServe. Ecosystems within each spatial pattern type were aggregated to the scale of the macrogroup in the National Vegetation Classification (NVC) system. These aggregated ecosystem types, or ecoforms, are used in the calculation of the ecosystem rarity index. A relative rarity index ranging from 0 to 100 was calculated for each ecoform based on spatial pattern type, area, and relative uniqueness and summarized by 12-digit hydrologic unit. Ecoforms with index values greater than 75 were considered rare. This map estimates the percentage of land area within each HUC covered by rare ecosystems—calculated by dividing total rare acres per HUC by total terrestrial acres and multiplying by 100. #### What are the limitations of these data? The USGS GAP Version 2 Landcover data represents a hybrid dataset. It was created by compiling regional GAP landcover datasets, classified by aerial imagery at 30-meter resolution, with data from the LANDFIRE project (USDA Forest Service and U.S. Department of Interior, 2012) as well as data from non-governmental organizations, state, and federal agencies. The GAP landcover data maps individual ecological systems across the entire United States. These ecological systems are based upon the NatureServe Ecological Systems classification³, yet they are not identical. The GAP labeling of the NatureServe ecosystems includes modifiers to the base NatureServe ecosystem labels. All national data layers such as GAP are, by their nature, inherently imperfect; they are an estimation of the truth based on the best available science. Calculations based on these data are therefore also estimations. Accuracy information for the source data sets can be found on their respective web sites. #### How can I access these data? EnviroAtlas data can be viewed in the interactive map, accessed through web services, or downloaded. USGS <u>GAP</u>, <u>NatureServe</u>, and <u>NVC</u> data are available on their respective websites. The EnviroAtlas Ecosystem Rarity <u>Toolbox</u> provides downloadable tools for four different ecosystem rarity metrics. ## Where can I get more information? There are numerous resources on the classification of ecosystems, their value, and conservation; a selection of these resources is listed below. Organizations such as USGS, NatureServe, and the International Union for the Conservation of Nature are groups that work on the conservation and classification of ecosystems. For additional information on how the data were created, access the metadata for the data layer from the drop down menu on the interactive map table of contents and click again on metadata at the bottom of the metadata summary page for more details. To ask specific questions about these data, please contact the EnviroAtlas Team. # Acknowledgments The data and toolbox for Ecosystem Rarity were generated by Samantha Sifleet, EPA ORISE Fellow. The fact sheet was created by Samantha Sifleet, EPA ORISE Fellow, Jessica Jahre, EPA Student Services Contractor, and Donald G. Catanzaro, PhD, Oneida Total Integrated Enterprises (OTIE). #### Selected Publications - 1. Nicholson, E., D.A. Keith, and D.S. Wilcove. 2009. <u>Assessing the threat status of ecological communities</u>. *Conservation Biology* 23:259–274. - 2. Rodríguez, J.P., K.M. Rodríguez-Clark, J.E. Baillie, N. Ash, J. Benson, T. Boucher, C. Brown, N.D. Burgess, B.E. Collen, M. Jennings, D.A. Keith, E. Nicholson, C. Revenga, B. Reyers, M. Rouget, T. Smith, M. Spalding, A. Taber, M. Walpole, I. Zager, and T. Zamin. 2011. <u>Establishing IUCN Red List criteria for threatened ecosystems</u>. *Conservation Biology* 25:21–29. - 3. Comer, P., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, M. Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2003. <u>Ecological systems of the United States: A working classification of U.S. terrestrial Systems</u>. NatureServe, Arlington, VA. Faber-Langendoen, D., D.L. Tart, and R.H. Crawford. 2009. <u>Contours of the revised U.S. National Vegetation Classification Standard</u>. *Bulletin of the Ecological Society of America* 90:87–93. Turpie, J., J. Adams, A. Joubert, T. Harrison, B. Colloty, R. Maree, A. Whitfield, T. Wooldridge, S. Lamberth, S. Taljaard, and L. Van Niekirk. 2002. <u>Assessment of the conservation priority status of South African estuaries for use in management and water allocation</u>. Water SA 28:191–206.